Sensor Fusion for Smartphone-based Vehicle Telematics

نویسنده

  • JOHAN WAHLSTRÖM
چکیده

The fields of navigation and motion inference have rapidly been transformed by advances in computing, connectivity, and sensor design. As a result, unprecedented amounts of data are today being collected by cheap and small navigation sensors residing in our surroundings. Often, these sensors will be embedded into personal mobile devices such as smartphones and tablets. To transform the collected data into valuable information, one must typically formulate and solve a statistical inference problem. This thesis is concerned with inference problems that arise when trying to use smartphone sensors to extract information on driving behavior and traffic conditions. One of the fundamental differences between smartphone-based driver behavior profiling and traditional analysis based on vehicle-fixed sensors is that the former is based on measurements from sensors that are mobile with respect to the vehicle. Thus, the utility of data from smartphone-embedded sensors is diminished by not knowing the relative orientation and position of the smartphone and the vehicle. The problem of estimating the relative smartphone-to-vehicle orientation is solved by extending the state-space model of a global navigation satellite system-aided inertial navigation system. Specifically, the state vector is augmented to include the relative orientation, and the measurement vector is augmented with pseudo observations describing well-known characteristics of car dynamics. To estimate the relative positions of multiple smartphones, we exploit the kinematic relation between the accelerometer measurements from different smartphones. The characteristics of the estimation problem are examined using the Cramér-Rao bound, and the positioning method is evaluated in a field study using concurrent measurements from seven smartphones. The characteristics of smartphone data vary with the smartphone’s placement in the vehicle. To investigate this, a large set of vehicle trip segments are clustered based on measurements from smartphoneembedded sensors and vehicle-fixed accelerometers. The clusters are interpreted as representing the smartphone being rigidly mounted on a cradle, placed on the passenger seat, held by hand, etc. Trip segments in clusters where the smartphone is believed to be held hand by hand display low maximum speeds and low correlations between the measurements from smartphone-embedded and vehicle-fixed accelerometers. Finally, the problem of fusing speed measurements from the on-board diagnostics system and a global navigation satellite system receiver is considered. Estimators of the vehicle’s speed and the scale factor of the wheel speed sensors are derived under the assumptions of synchronous and asynchronous samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vehicle Dynamic State Estimation Using Smartphone Embedded Sensors

The access to the information on the vehicle motion state is of great significance for the vehicle stability control and the development of active safety products. However, the vehicle state parameter extraction is primarily accessed by attaching special sensors to the vehicles, which usually requires modification of redesign of the vehicle with high cost. Smartphone integrate gyro, orientation...

متن کامل

Multi-sensor Data Fusion for Future Telematics Application

In this paper, we present multi-sensor data fusion for telematics application. Successful telematics can be realized through the integration of navigation and spatial information. The well-determined acquisition of vehicle’s position plays a vital role in application service. The development of GPS is used to provide the navigation data, but the performance is limited in areas where poor satell...

متن کامل

A Cloud-based Driver Monitoring for Inefficient Driving Behavior using OBD2 Telematics

This paper proposes a cloud-based vehicular data acquirement and analytics system for real-time driver conduct monitoring, trip analysis, and vehicle diagnostics. It comprises of an On-Board Diagnostics (OBD2) port to Bluetooth technology, a mobile application running on a smart phone, and a cloud based backend. The mobile app envisions both real-time data from sensors and alerts. A web based i...

متن کامل

Traffic congestion control using Smartphone sensors based on IoT Technology

Traffic congestion in road networks is one of the main issues to be addressed, also vehicle traffic congestion and monitoring has become one of the critical issues in road transport. With the help of Intelligent Transportation System (ITS), current information of traffic can be used by control room to improve the traffic efficiency. The suggested system utilize technologies for real-time collect...

متن کامل

A Smartphone-Based Driver Safety Monitoring System Using Data Fusion

This paper proposes a method for monitoring driver safety levels using a data fusion approach based on several discrete data types: eye features, bio-signal variation, in-vehicle temperature, and vehicle speed. The driver safety monitoring system was developed in practice in the form of an application for an Android-based smartphone device, where measuring safety-related data requires no extra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017